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I N F O A B S T R A C T

Over the last decades, the Per Capita Personal Income (PCPI) variable 
was a common measure of the effectiveness of economic development 
policy. Therefore, this paper is an attempt to investigate the determinants 
of personal income by using spatial panel data models for 48 U.S. states 
during the period from 2009 to 2017. We utilize the three following 
models: spatial autoregressive (SAR) model, Spatial Error (SEM) Model, 
and Spatial Autoregressive Combined (SAC) model, with individual (or 
spatial) fixe deffects according to three different known methods for 
constructing spatial weights matrices: binary contiguity, inverse distance, 
and Gaussian transformation spatial weights matrix. Additionally,  we 
pay attention for direct and indirect effects estimates of the explanatory 
variables for SAR, SEM, and SAC models. The second objective of this 
paper is to show how to select the appropriate model to fit our data. 

The results indicate that the three used spatial weights matrices provide 
the same result based on goodness of fit criteria, and the SAC model is 
the most appropriate model among the models presented. However, 
the SAC model with spatial weights matrix based on inverse distance is 
better compared to other used models. Also, the results indicate that 
percentage of individuals with graduate or professional degree, real 
Gross Domestic Product (GDP) per capita,and number of nonfarm jobs 
have a positive impact on the PCPI, while the percentage of individuals 
without degree or bachelor’s degree have a negative impact on the PCPI. 
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Introduction
Spending and income are a traditional way to measure 
the economy’s health. National personal income levels are 
very closely linked to the GDP, they work as a key indicator 
on consumption levels, inflationary pressures, and market 

conditions. Therefore, the ability to measure trends of 
income and spending is very important for investors because 
it is an indication about the overall economy power and 
future demand for both goods and services in the market. 

Many states throughout the nation now include some 
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measure of income in their formal performance measures. 
The use of income measures in benchmarking economic 
development policy is attractive for a number of reasons. 
Economic theory suggests that wages are closely linked to 
individual productivity, and hence, are a potential measure 
of accumulated economic development efforts of all types. 
Like wise, higher personal income leads to an increased 
demand for goods and services, resulting, in part, in greater 
employment, investment, and production within a region. 
Therefore, for policymakers who wish to monitor and assess 
public policy, personal income is an attractive choice for 
informative, yet low-cost, data to collect and observe, see 
Hicks et al. (2013). Since the economic development of 
a region usually affects the surrounding area, therefore, 
when study the PCPI, we can include the spatial effects in 
the model, see Purwaningsih et al. (2017).

According to what is posted on U.S. Bureau of Economic 
Analysis (BEA) site, personal income statistics in USA tell us 
lot information about how U.S. workers and businesses are 
faring. In addition, these statistics help assess and compare 
the economic well-being of state residents. The PCPI, an 
area’s personal income divided by its population, can be 
used to compare incomes from one state to another or to 
the nation overall.

In general, the “panel data” terminology refers to the 
pooling observations on a cross section of households, 
countries, firms, etc., over several time periods. See, 
e.g.,Baltagi (2008), Youssef and Abonazel (2017), Abonazel 
(2017, 2018, 2019), and Youssef et al. (2020) for details 
on panel data modeling. Panel data models have taken 
an important role in the literature of analyzing personal 
income determinants. Additionally, spatial data analysis was 
witnessed explosive growth in last decades in econometrics 
and in many applied fields. The attention to space, location, 
and interaction between them became an important feature 
of scholarly work because of the increased availability of 
data sets in which a number of spatial units are followed 
over time. 

This paper is organized as follows: Section 2 reviews some 
literature about main determinants of the personal income.
Section 3 presents the used framework of spatial panel data 
(SPD) models in our empirical study. Section 4 introduces 
SPD models (SAR, SEM, and SAC) with fixed effects (FE).
Section 5 presents our empirical study on U.S. states. Finally, 
Section 6 includes the concluding remarks.

Main Determinants of Personal Income
In this section, we draw attention to some of the essential 
points to take into account when thinking about how to 
model the determinants of personal income. 

Educational Attainment

The human capital is one of the most important ingredients 
of the economic modeling in much literature. It can be 

referred to human capital as all worker characteristics that 
can potentially increase the productivity and efficiency in 
the production process, in this context, there are much of 
the literature of labor economics which were shown the 
positive impact of human capital on individual earnings, 
see Card (1999) and Akgüç (2011). According to such 
studies, the pre-labor market investments in schooling 
potentially boost the individual earnings through increasing 
the productive skills. There are other studies concerned 
with investigating the causal relationships between family 
income and educational attainment, see Blanden and 
Gregg (2004).

Since the availability of the international educational 
attainment datasets, many empirical studies have used 
the educational attainment variables as a proxy for the 
human capital stock in country. Bennett (2018) mentioned 
that “Educational attainment is a significant determinant 
of wages, and the highest income earners in the U.S. states 
are often the most educated. An efficient educational 
system should integrate every student in the country into 
the labor force by ensuring they have the skills necessary 
to compete in the labor market and make a good wage”.

Kalogirou and Hatzichristos (2007) presented a spatial 
modeling framework for income estimation in the 
municipality of Athens. They found that the data to be 
spatially autocorrelated, and the most interesting variable 
as the determinant of income was the proportion of people 
witha master’s or doctorate degree.

Economy’s Size

The GDP can give us an overall picture of the economy 
of the state. It is an indicator of an economy’s size in a 
country, see Abonazel and Abd-Elftah (2019) and Abonazel 
and Rabie (2019). In addition to, economic prosperity can 
be measured as via GDP per capita (GDPPC). There are 
several empirical studies interested in investigating the 
casual relationship between GDP and income inequality, 
see, e.g., Brosio et al. (2016), Brueckner and Lederman 
(2017), and Chang et al. (2018).

Labor Force Type

Non-farm employment is believed to reduce poverty, 
and inequality in the distribution of incomes. Since farm 
employment is generally related with an increase drisk 
of poverty, Möllers and Buchenrieder (2011) studied the 
impact of rural non-farm employment on the income 
distribution among small family farms in transition in 
Croatia.

Tran (2015) studied the impact of non-farm employment 
on household income by using logistic regression analysis 
among ethnic minorities in the Northwest Mountain and 
Vietnam. Hisresults indicated that non-farm employment 
provides a windowto get out of poverty. There are many 
other studies confirmed the same results, e.g., De Janvry et 
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al. (2005) explained that, without non-farm employment, 
poverty in rural regions in China would be much deeper, as 
well as, inequality in income distribution would be higher.

The Framework of Spatial Panel Data Models
Anselin (1988) defined spatial econometrics as a set of 
techniques that deal with the distinctive properties of 
space in the statistical analysis of regional science models.
Elhorst (2014) also defined spatial econometrics which is a 
subfield of econometrics that deals with spatial interaction 
effects among geographical units, such as cities, regions, 
countries, and so forth depending on the nature of the 
study. Additionally, Lee and Yu (2010a) referred to theses 
interaction effects may be among economic units in space, 
where the space can be physical or economic in nature.

Since spatial econometrics deals with interaction effects 
among spatial units, such provinces, regions, etc. In modeling 
terminology, three different types of interaction effects are 
defined that explain why an observation associated with a 
particular location may be relay on observations in other 
locations (see Elhorst, 2014):

•	 Endogenous interaction effects among the dependent 
variable: which measures whether the dependent 
variable (y) of unit (A) depends on the dependent 
variables of other units (B) where (B≠A) and vice versa. 
This effect can be denoted by ( NTW y ).

•	 Exogenous interaction effects among explanatory 
variables: which measures whether the dependent 
variable (y) of unit (A) depends on the explanatory 
variables (X) of other units (B) where (B ≠ A). This effect 
can be denoted by (

NTW X ). Note that if the number 
of explanatory variables is (K), the maximum number 
of exogenous interaction effects is also (K).

•	 Interaction effects among the error terms (u): this 
effect can be denoted by ( NTW u ) indicating that units 
may behave similarly because they share the same 
unobserved characteristics or face similar unobserved 
environments.

Model Specification 

A full static model, with all types of interaction effects, 
takes the following form:

                        (1)

where ty  is an ( )N 1×  vector consisting of one observation 
of the dependent variable for every spatial unit ( )1,  ,  Ni =   
in the sample at time t, N tW y indicates to the endogenous 
interaction effects, tX  is an (N×K) matrix of exogenous 
explanatory variables, N tW X refers to the exogenous 
interaction effects, ut is the error terms of the model, 
which is assumed to be serially correlated and to be spatially 
correlated, and N tW u  reflects the interaction effects among 

error terms. Where NW  is a (N×N) non-negative matrix of 
known constants describing the spatial arrangement of 
the units in the sample, λ is the spatial autoregressive 
coefficient, ρ is called the spatial autocorrelation coefficient, 
while Ɵ just as β, represents a (K×1) vector of fixed but 
unknown parameters, and μ is a (N×1) vector contains 
spatial specific effects. Model (1) can be rewritten as in 
the following reduced form:

              (2)

where

                                                               (3)

                                                                     (4)

Vega and Elhorst (2013) mentioned that there is a large 
gap between econometric theoreticians and practitioners 
in terms of interest level in these interaction effects. 
Theoreticians are mainly focused on the models containing 
interaction effects among endogenous variables or 
interaction effects among error terms, because of all the 
econometric problems associated with these models 
estimation process. Whereas the spatial econometric 
models with exogenous interaction effects do not suffer 
from any econometric problems, standard estimation 
techniques are sufficient under these circumstances. In 
contrast, practitioners often interest in the spatial model 
with exogenous interaction effects and take it as point of 
departure due to their focus on spillover effects. Table 1 
summarizes linear spatial econometric models.

Model
Spatial Interaction Effects

Term Number

SAR: Spatial 
Autoregressive Model N tW y 1

SEM: Spatial Error 
Model N tW u 1

SAC: Spatial 
Autoregressive 

Combined Model
N tW y & N tW u 2

SLX: Spatial Lag of X 
Model N tW X K

SDM: Spatial Durbin 
Model N tW y & N tW X K+1

SDEM: Spatial Durbin 
Error Model N tW X & N tW u K+1

GNS: General Nesting 
Spatial Model

N tW y & N tW X &

N tW u
K+2

Table 1. SPD Models with Different Combinations of 
Spatial Interaction Effects
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Spatial Weights Matrix
In order to take into account the spatial dependence in the 
regression model, a spatial weights matrix is used. It is an 
important component of spatial econometric models, which 
determines the intensity and the structure of the spatial 
dependence between locations exogenously. 

Formally, the spatial weights matrix ( )NW  is defined as a 
( ) N N× positive matrix which has zero diagonal elements. 
Its rows and columns correspond to the cross-sectional 
observations. An element ijw  of the matrix represents the 
prior strength of the interaction between location ( )i  (row 
number i in NW ) and location ( )j  (column number j in NW ). 

To generalize the usage of spatial weights matrix in a panel 
data setting, the weights are assumed to remain constant 
over time. Using the subscript to specify the dimension of 
matrix, with ( )NW  as the weights for the cross-sectional 
dimension, the full ( )NT NT×  weights matrix then becomes:

N

N
NT T N

N

W 0 0
0 W

W I W
0

0 0 W

 
 
 = = ⊗
 
 
 



 

  



                                                                        ,                        (5)    

where ⊗  is Kronecker product.

The problem of choosing the optimal spatial weights matrix 
is still in the developing phase. There are several methods 
to define the spatial matrix. But, in our study, we only use 
the following three different methods to construct spatial 
weights matrix: 

• The simplest version of a spatial weights matrix is 
a binary contiguity matrix; when two states share 
a common border, common vertex, or both, the 
corresponding entry in the spatial weights matrix is one 
and zero otherwise. The elements on the main diagonal 
are zero by definition. Anselin (1988) mentioned that 
this definition of contiguity obviously emphasizes the 
need for the existence of a map, which is used to 
discern the boundaries. This matrix induces a simple 
spatial structure that might not reflect actual spatial 
linkages in an appropriate way. Therefore, it can be 
constructed spatial weights matrices with general 
weights by utilizing data on geographic distances 
between states. 

• The spatial relations can be based on a simple 
transformation by taking the inverse of the distance 
separating the cross-sectional observations. This 
method enables the construction of weights matrix that 
respects Tobler’s law: the weights are greater (smaller) 
as the observations are spatially closer (further apart), 
for more details, see Dubé and Legros (2014).

• The relation who based on Gaussian transformation 

is not only dependent on the distance between 
observations, but also dependent on a threshold 
distance. The explicitly advantage of this transformation 
is taking into account a threshold distance. 

This threshold distance can be specified as the average 
distance, the maximal distance, or even max-min criterion, 
which meaning that all the observations are taken into 
consideration in the construction of the spatial weights, for 
more details, see Dubé and Legros (2014). The threshold 
distance also can be used in case of inverse distance matrix, 
as mentioned in Figure 2.

Spatial Panel Data Model Assumptions

We can summarize the general assumptions of SPD models 
in the following (see Kapoor et al., 2007; Lee and Yu, 2010b):

Assumption 1: Spatial Weights Matrix

•	 NW  is a non-stochastic spatial weights matrix and 
row-sum normalized with zero diagonals. 

•	 The admissible parameter space for the true spatial 
effects λ and ρ is ( )1,1− .

•	 The spatial transformation matrix, e.g.,  (IN- λWN) is an 
invertible on the compact parameter spaces of spatial 
effects and their inverses are Uniformly Bounded (UB) 
in the parameter spaces.

•	 NW  is UB in both row and column sums in absolute 
value.

Assumption 2: The Error Components

The disturbances {Ɛit} are . . .i i d  across i and t with zero 
mean, finite variance (say σ2), and their higher than fourth 
moments exist.

Assumption 3: Covariates

The regressors ( )tX  are non-stochastic and have full rank 
and their elements are bounded, uniformly in absolute 
value. 

Assumption 4: N and T

N  is large, where  T  can be finite or large. The case of 
finite N  and large T is of less interest as the incidental 
parameter problem doesn’t occur in this model.

Spatial Fixed Effects Panel Data Models
In this section, we will discuss the main three (SAR, SEM, 
and SAC) models when the individual effects are fixed. 

Spatial Autoregressive Model

Consider the following SARmodel with FE:

.                            (6)

It can be written in a reduced form as:

.                                  (7)

where NS  is defined in (3). By stacking the observations 
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across individual and time, the model (6) can rewrite as:

 .                (8)

where Tl  is a (T×1) vector of ones. 

The consistent estimation of the individual FE is not possible 
in case of large N because of the incidental parameter 
problem. Therefore, Elhorst (2003) suggested estimation 
approach based on specific transformation to eliminating 
the time invariant individual FE, and then obtain consistent 
estimators. Instead of the demeaned variables, one may 
also use the original variables by using 0Q -transformation 
as follows:

                                  (9)

where

                       (10)

                                                                                                      (11)

The focus in this section will base on the maximum likelihood 
(ML) estimation with transformation approach. The log 
likelihood function of model (9), as if the disturbances 
were normally distributed, is:

             (12)

where and NS  is the Jacobian 
determinant. This function is very similar to that derived 
for the SAR cross-section model which was proposed by 
Anselin and Hudak (1992).

Elhorst (2009) proposed a concentrated likelihood approach 
that can be maximized from residuals ( )* *

0 1 and e e  of the 
Ordinary Least Squares (OLS) regression of *y  on *X  and 
the OLS regression of ( ) *

T NI W y⊗  on *X . Then the ML 
estimator of λ is obtained by maximizing the following 
concentrated log-likelihood function:

    (13)

where C is a constant not depending on λ. Unfortunately, 
this maximization problem can only be solved numerically, 
since a closed-form solution for λ not exist. Therefore, 
an iteration procedure must be used, which require λ be 
initially fixed to calculate  andσ2. Finally,   and σ2 are 
obtained from the first order conditions of the likelihood 
function by replacing λ with its estimated value from the ML.

Spatial Error Model

Consider the following SEM with FE:

                 (14)

It can be written in a reduced form as:

                                                           (15)

where NB  is defined in (4). By stacking the observations 
across individual and time, the model (14) can rewrite as:

  (16)

The estimation strategy for the cross-sectional SEM, 
which proposed by Anselin and Hudak (1992), can be 
easily extended to the panel context. Again a concentrated 
likelihood approach can be taken but an iterative procedure 
is needed to estimate the parameters of the SEM. The model 
is transformed according to (10) to eliminate individual FE. 
The log-likelihood function of model (16) can be written as:

     (17)

where e = y - Xβ.

Elhorst (2009) proposed the following concentrated log-
likelihood function of ρ:

         (18)

where

    (19)

Maximizing this function with respect to ρ yields the ML 
estimator of ρ, given β and σ2 . An iteration procedure must 
be used in which the set of parameters β and σ2 .

According to Millo and Piras (2012), the estimation 
procedure of SEM with individual FE can be summarized 
in the following steps:

Step 1: Estimated OLS residuals (of the transformed model)
can be used to obtain an initial estimate of ρ. 

Step 2: The initial estimate of ρ can be usedto compute a 
(spatial) feasible Generalized Least Square (GLS) estimator 
of the regression coefficients, the errorvariance and a new 
set of estimated GLS residuals. 

Step 3: An iterative procedure may then beem ployed: 
the concentrated likelihood and the GLS estimators are 
alternately computed until convergence.

Spatial Autoregressive Combined Model 

Consider the following SAC model with individual FE:

 (20)

It can be written in a reduced form as:

                                          (21)

Lee and Yu (2010b) used the transformation, '
T T T T

1J I
T

l l = − 
 

(the deviation from the time mean operator) which is 
defined in (11), to eliminate the individual effects. Because 

NW  is time invariant, the variables in the deviation form 
would still be a SAR. 

Let T,T 1 T
1F ,
T

l−
 
 
  be the orthonormal matrix of the eigenvectors 

of T J , where T,T 1 F  − is ( ) 1T T −  eigenvector matrix corresponding 
to the eigenvalues of one and T

1  
T

l is the T-dimensional 
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column vector corresponding to the eigenvalues of zero.
For any ( ) 1T T − matrix, 

( )** **
1 T 1y ,  , y  −… = ( )1 T T,T 1y ,  , y F ,−…                               (22)

then equation (20) implies:

In this model, we assume that: 

                                           

                                     (23)

The log likelihood function of (23), as if the disturbances 
were normally distributed, is:

                                            (24)

where

                                                                (25)

Empirical Study
Annual data for 48 U.S. states are used during the period 

from 2009 to 2017. We employ three specifications of SPD 
models (SAR, SEM, and SAC models) utilizing three different 
known methods for constructing spatial weights matrices 
as shown in Figure 2. In addition to that we pay attention 
for estimates of direct and indirect effects of explanatory 
variables in SAR, SEM and SAC models. 

The second objective of this study is to show how to choose 
the appropriate model to fit our data. It is necessary to 
know whether or not there are spatial effects, and if 
so, as a second step, it is determined the type of spatial 
interaction effects should be taken into account for (i) the 
spatially autocorrelated error term, (ii) the spatially lagged 
dependent variable or (iii) combination of them.

Data Description 

As an empirical application, this paper is concerned with 
studying the significant impact of three dimensions on the 
PCPI using data for 48 U.S. states during period from 2009 
to 2017. The dataset is limited by the amount of information 
available for each state involved. We selected a variety of 
variables that have been shown to correlate with the PCPI 

Dimension Variable 
Name

Name of Variable on the 
Site Definition Measuring 

Unit Source

Dependent 
Variable PCPI Per capita personal income Per capita personal income 1000 

dollars U.S. BEA

Educational 
Attainment

ND Some college, no degree Percentage of individuals 
without degree %

U.S. 
Census 
Bureau

BD Bachelor’s degree Percentage of individuals 
with bachelor’s degrees %

GD Graduate or professional 
degree

Percentage of individuals 
with graduate or 

professional degree
%

Economy’s 
Size GDPPC Real GDP per capita by state Real GDP per capita 1000 

dollars
U.S. BEA

Labor Force
Population Population Number of Population 100000 

personsNonFarm Nonfarm employment Number of nonfarm jobs

Variable Mean Standard Deviation Minimum Maximum
PCPI 44.18 7.88 29.94 72.11
ND 21.43 3.25 0.00 27.60
BD 17.79 3.06 0.00 24.80
GD 10.34 2.72 0.00 18.70

GDPPC 49.82 9.41 33.15 76.36
Population 65.28 70.63 5.60 394.00
NonFarm 37.19 39.78 3.72 233.48

Table 2. Definition of the Variables

Table 3. Descriptive Statistics of the Variables
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in previous researches. The used softwares in our study are 
“STATA version 15” and “R version 3.6.1”. Table 2 displays 
the definition of he used variables, and some descriptive 
statistics of these variables have been presented in Table 3.

To visualize regional differences in income per capita of 
U.S. states, Figure 1 presents a map of USA which is colored 
according to the extent of regional income per capita in 
2017. Based on these exploratory tools, there is substantial 

ND BD GD GDPPC Population NonFarm
ND 1
BD 0.074 1
GD -0.308*** 0.733*** 1

GDPPC -0.179*** 0.572*** 0.551*** 1
Population -0.157*** 0.088 0.1491** 0.188*** 1
NonFarm -0.169*** 0.124** 0.181*** 0.227*** 0.997*** 1

VIF1 1.59 3.27 3.57 1.90 305.63 28061.42
VIF2 1.47 3.10 3.06 1.66 ---- 1.08

Min. of all Distances Mean of all Distances Max. of all Distances Std. Dev. of all Distances
80.41 1676.80 4231.84 948.20

Links W1: Binary Contiguity W2: Inverse Distance W3: Gaussian 
Transformation

Total number of links 214 210 210
Min. number of links 1 1 1

Mean number of links 4.46 4.38 4.38
Max. number of links 8 11 11

Figure 1. Per Capita Personal Income according to 
State in 2017

variation in regional income per capita in U.S. states. In 
2017, the state with lowest personal income exhibited a 
36,567 U.S. dollar per capita (Mississippi) while the highest 
regional income amounted to 72,110 U.S dollar per capita 
(Connecticut). 

Testing the Multicollinearity of Explanatory 
Variables

The first step of data processing is to try to ensure that 
there is no high linear correlation between two or more 
explanatory variables. Where statistical inferences are 
not reliable in the case of multicollinearity, because it 
makes estimates of the regression coefficients inaccurate, 
inflates their standard errors, deflates the partial t-tests for 
them, gives false non-significant p-values, and reduces the 
predictability of the model, see Studenmund (2016). We use 
the most common method to detect multicollinearity: (i) 
Pearson correlation matrix between each pair of predictor 
variables and (ii) the Variance Inflation Factor (VIF) based 
on there sults of the pooled OLS model, see Paul (2006)
and Youssef et al. (2020).

Table 4 shows that there is strong correlation among the 
variables “Population and NonFarm” greater than 0.99. 
Additionally, theresults of VIF in the first time with all 

Notes: VIF1: is VIF for all variables, VIF2: is VIF after removing “Population”.The superscripts *** and ** indicate statistical significance 
at the 0.001 and 0.01 level, respectively.

Table 4. Pearson Correlation Matrix and VIF

Table 5. Summary Statistics of the Straight Line Geographic Distances 
between Centroids of U.S. States, in kilometers

Source: https://www.mapdevelopers.com/distance_from_to.php (Access Date: 29/8/2019)
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regressors (VIF1) confirmed that there is multicollinearity 
problem between the regressors; where in most of empirical 
studies, the general rule of thumb is that VIF values exceeding 
5 need further investigation, while VIF values exceeding 10 
indicate to serious multicollinearity requiring correction. 
According to Paul (2006), if there are two regressors are 
almost linearly correlated, eliminating one regressor may 
be useful in combating multicollinearity. Therefore, we drop 
one variable (Population) from the model, the new results 
of VIF (VIF2) confirmed that there is no multicollinearity 
problem because all values of VIF2 less than 5. 

Spatial Weights Matrix
In order to account for spatial dependence in the regression 
model, we utilize the following three different ways to 
construct spatial weights matrix (see Figure 2): We use a 
binary contiguity spatial weights matrix for the U.S. states, 
which is available in the splm package (spatial panel data 
models in R), see Millo and Piras (2012). While we use the 

Figure 2. Spatial Weights Matrices in Our Empirical Study
data of the straight-line geographical distances between 
centroids of U.S. states, which are summarized in Table 
5, to create the spatial weights matrices based on inverse 
distance and Gaussian transformation. The three used 
spatial weights matrices are row standardized to facilitate 
interpretation, see Lottmann (2012).

Framework of Spatial Econometric Modeling

We analyze determinants of regional differences for PCPI 
among U.S. states by using SAR, SEM, and SAC models with 
spatial weights matrices mentioned in Figure 2. The regional 
study of income levels may mean that they correlated 
over space. The presence of spatial autocorrelation 
implies that the level of personal income in one particular 
region is correlated with that of neighboring regions. The 
spatial econometric literature proved that ignoring spatial 
interaction effects make estimates are biased and inefficient, 
see Anselin and Bera (1998).

The pooled OLS regression model will yield biased parameter 
estimates in case of SAR and SLX. However, OLS estimation 
will produce unbiased and inefficient estimates for SEM. 
Where ignoring of spatially lagged variable is similar to an 

omitted variable bias, see Franzese and Hays (2007). As OLS 
estimation for SEM will lead to inconsistent estimates, see 
Franzese and Hays (2007), and Anselin and Bera (1998).

In this study, we base on the following framework proposed 
in Figure 3. To capture spatial dependence in the data, we 
utilize spatial panel approach. The spatial econometric 
literature provides various models for data with spatial 
autocorrelation: the model with spatially lagged dependent 
variable, SAR, spatially lagged in the error term, SEM, 

Figure 3. Framework of Our Empirical Study
spatially lagged explanatory variables, SLX, and combinations 
of them. The SLX model is the simplest model because the 
additional regressors are exogenous and the error term 
remains spherical. It does not suffer from any econometric 
problems. Therefore, we will focus in this paper on SAR, 
SEM, and SAC models. 

Testing the Spatial Dependence

To test the spatial interaction effects in case of a cross-
sectional data, Burridge (1980) and Anselin (1988) proposed 
Lagrange Multiplier (LM) tests for a spatially lagged 
dependent variable and for spatial error correlation term. 
Anselin et al. (1996) also proposed robust LM tests for a 
spatially lagged dependent variable in the local presence 
of spatial error autocorrelation and for spatial error 
autocorrelation in the local presence of a spatially lagged 
dependent variable. These tests are frequently used in 
empirical studies. Recently, Anselin et al. (2008) developed 
the classical LM tests for a spatial panel, and Elhorst (2009) 
developed the robust counterparts of these LM tests for a 
spatial panel. The classical and robust LM tests rely on the 
residuals of the non-spatial model and follow a Chi-square 
distribution with one degree of freedom.

After estimation of a pooled OLS model, spatial dependence 
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tests (LM-lag and LM-error tests) can be applied to specify 
whether estimation of a spatial model is warranted. The 
SEM and SAR models can be compared as a robustness 
check. If the LM test is rejected for the absence of spatial 
lag or spatial error in the model, it proves that a spatial 
panel model is the suitable method for the analysis.

The LM-lag test is used to determine if there is any ignored 
spatial autocorrelation in the dependent variable, while the 
LM-error test is employed to detect spatial dependence in 
error terms. Both of these tests are one-way tests in that 
they only considered the specific type of spatial dependence 
that is being tested. The robust varieties of these tests 
(robust LM-lag and robust LM-errortests) are designed to 
take into account the other type of spatial dependence, that 
is, the robust LM-lag test takes into account the potential 
presence of spatial dependence in the error term, while 

the robust LM-error test takes into account the potential 
of spatial dependence in the dependent variable. 

Table 6 shows that classic and robust LM tests of spatial lag 
and spatial error terms are significant at the 0.001 level.
However, the spatial error term is more significant than 
the spatial lag term in the three types of spatial weights 
matrices. So, we will include spatial lag and spatial error 
terms in our model, and then select the best model based 
on goodness of fit criteria.

Model Selection

As in a lot of empirical research, the models are comparable 
in terms of the goodness of fit criteria, such as the Log-
pseudo likelihood, Overall R-Squared, Akaike Information 
Criterion (AIC), and Bayesian Information Criterion (BIC), 
see Barufi et al. (2012). However, AIC and BIC are of the 

Test
W1: Binary Contiguity W2: Inverse Distance W3: Gaussian Transformation
Lag Error Lag Error Lag Error

LM 149.49*** 192.98*** 133.62*** 137.96*** 105.11*** 109.30***
Robust LM 22.53*** 66.03*** 25.53*** 29.88*** 20.63*** 24.82***

Table 6. Results of Classical and Robust LM Tests with Different Spatial 
Weights Matrices

Note: The superscript *** indicates statistical significance at the 0.001 level.

FE 
without 
Spatial

W1: Binary Contiguity W2: Inverse Distance W3: Gaussian Transformation

SAR SEM SAC SAR SEM SAC SAR SEM SAC

ND -1.57*** -0.26** -0.92*** -0.13 -0.27*** -0.11*** -0.20* -0.34*** -1.26*** -0.23**

BD -1.11** -0.51* 0.16 -0.40* -0.69*** 0.60** -0.73*** -0.78*** 0.83*** -0.86***

GD 5.95*** 1.59*** 1.96*** 1.10*** 1.80*** 1.52*** 1.71*** 2.15*** 1.60*** 2.02***

GDPPC 0.44*** 0.31*** 0.28*** 0.30*** 0.30*** 0.30*** 0.29*** 0.33*** 0.34*** 0.29***

Non
Farm 0.16*** 0.13*** 0.11*** 0.12*** 0.13*** 0.09*** 0.12*** 0.13*** 0.08*** 0.12***

Mean 
of FE ---- -7.90 23.09 -9.56 -6.09 22.08 -6.34 -5.43 19.86 -5.39

λ ---- 0.68*** ---- 0.74*** 0.67*** ---- 0.70*** 0.62*** ---- 0.67***

ρ ---- ---- 0.90*** -0.31*** ---- 0.87*** -0.11* ---- 0.84*** -0.17*

Log-
like

-792
.274

-508.
843

-529.
617

-545.
906 -545.906 -545.906 -542.

372
-542.
372

-567
.345 -567.35

R-Squ
ared 0.5400 0.5018 0.5700 0.5122 0.4346 0.6137 0.4149 0.4695 0.6487 0.4331

AIC 1596.54 1031.68 1073.23 1029.16 1022.91 1091.06 1022.88 1067.47 1139.18 1067.28

BIC 1620.96 1059.34 1100.88 1060.77 1059.67 1118.71 1054.48 1099.13 1166.83 1098.88

Table 7. Results of Estimated SPD Models with Individual FE

Notes: Within estimator is used in case of FE without spatial effects. ML estimation transformed approach is used in case of SPD 
models. The superscripts ***, **, and * indicate statistical significance at the 0.001, 0.01 and 0.05 level, respectively



10
Youssef AH et al.
J. Adv. Res. Appl. Math. Stat. 2020; 5(1)

ISSN: 2455-7021
DOI: https://doi.org/10.24321/2455.7021.202001

best methods to select the most adequate weighting matrix 
according to the simulation study of Herrera et al. (2019).

Table 7 shows that the values of AIC and BIC of SAC 
models are smaller than the values of AIC and BIC of SLM 
and SEM models in most cases of used spatial weights 
matrices. Therefore, we can say that the SAC model is 
more appropriate than SLM and SEM models for our data.
On purely statistical grounds, all three SAC models for the 
three types of spatial weights matrices seem to provide 
very similar levels of goodness of fit criteria. However, the 
SAC model with spatial weights matrix based on inverse 
distance returns a slightly higher Log-pseudo likelihood, 
and lower AIC and BIC. On the other hand, the SAC model 
with binary contiguity matrix records the higher R-Squared.

Interpretation of the Results
One should remember that the traditional interpretation 
of the regressioncoefficient; the effect of the explanatory 
variable on a dependent variable, is only valid in case 
of regression models without spatial interaction effects. 
However, in models with a spatial interaction effects (such 
as: SAR, SAC, SDM, and GNS) in order to fully explain the 
effect of changes, direct and indirect effects must be 
calculated and interpreted as model coefficients. This is 
because of appearing y in both sides of the equation, 
where y appears on the left-hand side and λWy appears 
on the right-hand side, for more details, see LeSage and 
Pace (2009) and Kopczewska et al. (2017).

LeSage and Pace (2009) and Elhorst (2010) defined the 
spatial direct effects as an impact of change of kX  in i 
location on change of y in  i location, on the other hand, 
the indirect effect (spillover effect) is an impact of change of 

kX in i  location on change of y in j  location ( )i j≠ . Where 
these effects can be derived from the partial derivatives 
matrix of the expected value of ty  with respect to the kth 
explanatory variable of tX : 

( ) ( )

( ) ( )

1t 1t

1kt Nkt

Nt Nt

1kt Nkt

E y E y
x x

M .
E y E y

x x

 ∂ ∂
 ∂ ∂ 
 =
 
∂ ∂ 
 ∂ ∂ 



  



                                                          

                                                                                                 (27)

Since both the direct and indirect effects are different for 
each unit in the sample, the presentation of these effects 
is considered a problem. In our case, there are 48 states 
(spatial units) and five explanatory variables; we obtain 
five different squared matrices (of order 48) of direct and 
indirect effects. To reduce the number of these matrices 
for direct and spillover effects, LeSage and Pace (2009) 
proposed to report one summary indicator for the direct 
effect measured by the average of the diagonal elements 

Variable Direct Effect Indirect Effect Total effect

ND -0.2675** -0.4166* -0.6841*

BD -0.9504*** -1.4803*** -2.4306***

GD 2.2326*** 3.4774*** 5.7100***

GDPPC 0.3813*** 0.5939*** 0.9751***

NonFarm 0.1599*** 0.2491*** 0.4091***

of M, and one summary indicator for the spillover effect 
measured by the average row or column sums of the 
off-diagonal elements in the same matrix M in (27). The 
average row effect represents the impact on a specific 
element of the dependent variable as a result of a unit 
change in all elements of an exogenous variable, while the 
average column effect represents the impact of changing a 
specific element of an exogenous variable on the dependent 
variable of all other units.

In SAC model, the direct effect is the average of main 
diagonal elements of the following matrix, and the indirect 
effect is the average of row off-diagonal elements in the 
same matrix:

                                               (28)

Based on the above, the estimates of SAC model cannot 
be interpreted as partial derivatives in the traditional 
regression model. In our study, to assess the magnitudes 
of impacts arising from changes in the five explanatory 
variables, Table 8 provides the measures of direct, indirect, 
and the total effect for each variable.

Table 8. Direct and Indirect Effects 
of SAC model usingW2

Notes: The superscripts ***, **, and * indicate statistical signif-
icance at the 0.001, 0.01 and 0.05 level, respectively.

The first column of Table 8 contains the direct effects, 
which measure how much the dependent variable (PCPI) 
changes in a state when a particular explanatory variable 
changes in that same state. We note that all five included 
explanatory variables are significant at the 0.01 level or less. 

The second column in Table 8 shows the indirect or 
spillover effects of changes in our explanatory variables.
It is important to note that the scalar summaryused to 
calculate the indirect effects summarizes spillovers over 
all states in the sample. We note that all five included 
explanatory variables are significant at the 0.001 level and 
one of them is significant at 0.05. 

Finally, the last column of Table 8 shows the point estimates 
for the total effects, which are defined as the sum of the 
direct and indirect effects. We can note that all total effects 
are statistically significant at different significance levels 
(0.05 and 0.001).
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In general, we conclude the following notes from Table 8:

• The direct effect of increasing ND in specific state by 
1% directly decreases PCPI by 267.5 dollars in the same 
state. In addition, the indirect effect of increasing ND 
in neighboring states has negative effect on the PCPIby 
416.6 dollars. The total effect from ND is negative and 
consists mostly of indirect impact. In other words, the 
total effect of ND has a point estimate of -0.6841 which 
indicates that a 1% increase in ND in the own and 
surrounding states decreases the PCPI by 684.1 dollars. 

• The impact of BD has a negative direct and indirect 
effect on the PCPI, indicating that we expect an increase 
in the PCPI in states with a low level of BD. The indirect 
effect resulting from BD in near by states is close to 
twice the magnitude of the direct effect, indicating 
a large spillover effect from BD. The total effect is 
negative, with about two-third of the spillover effects 
of BD in neighboring states.

• The direct and indirect effects of GD are positive (as 
expected); this means that the increase in GD in a 
specific state by 1% directly increases the PCPI by 
2232.6 dollars in the same state and indirectly increases 
it in other states by 3477.4 dollars. 

• The direct and indirect effects of GDPPC are positive 
(as expected); with the increase of the GDPPC by 1000 
dollar in a particular state, the PCPI will increase by 
381.3 dollars on average in the same state, and increase 
by 593.9 dollars on average in other states.  

• The impact of NonFarm has a positive direct and indirect 
effect on the PCPI; when the number of nonfarm jobs 
increases by 100000 in a particular state, the PCPI 
increases by 159.9 dollars in the same state, and 
increase by 249.1 dollars on average in other states.

Summary and Conclusion
This paper is an attempt to investigating of the PCPI 
determinants. We utilize SPD approach by using annual 
data for 48 U.S. states over the period from 2009 to 2017 
based on U.S. Census Bureau and Bureau of Economic 
Analysis. We employ the different three spatial models 
(SAR, SEM, and SAC) with individual FE according to three 
different known methods for constructing spatial weights 
matrices (binary contiguity, inverse distance and Gaussian 
transformation spatial weights matrix). To model regional 
income, we use five explanatory variables according 
previous empirical researches. These variables are: the 
percentage of people with (no degree, bachelor’s degree, 
and graduate or professional degree), real GDP per capita, 
and number of non-farm jobs. We can summarize our 
empirical study in the following:

• For each type of spatial weight matrices, we test the 
spatial interaction effects by using classical LM-Lag and 
LM-Error tests, the results indicate to reject the null 

hypothesis of the absence of a spatial lag term and 
spatial error term at the 0.001 level of significance in 
all our models.

• Robust counterparts of LM tests have been applied. The 
results show that both of robust LM-Lag and robust LM-
Error test are significant at the 0.001 level. Therefore, 
we included spatial lag and spatial errors terms in 
the model. This means that the SAC models are the 
appropriate models of our data. 

• the most appropriate model to fit our data is selected 
based on goodness of fit criteria (Log-pseudo likelihood, 
overall R-squared, AIC, and BIC). The results show 
that the SAC model with inverse distance matrix is 
the best model; because it has the smallest values of 
AIC and BIC.

• We estimate the direct and indirect effects of final 
selected model to for interpretation purposes. The 
results show that the direct and indirect effects of all 
five included explanatory variables are significant at 
the 5% level or less.

Finally, we point to the need for more studies to discover 
more effective mechanisms that help countries in improve 
the population’s standard of living and their personal 
incomes. We suggest studying the impact of other 
economic indicators on the PCPI, such as “the governmental 
expenditure on education, and foreign direct investment”.
Future research also could follow a number of promising 
paths for identifying the underlying determinants of the 
PCPI at state-level in USA, by using random effects SPD 
approach.
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